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CHAPTER8
Linear Algebra:

Matrix Eigenvalue Problems

Chapter 8  p1
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Section 8.0  p2

A matrix eigenvalue problem considers the vector 
equation

(1) Ax = λx.

Here A is a given square matrix, λ an unknown scalar, and 
x an unknown vector. In a matrix eigenvalue problem, the 
task is to determine λ’s and x’s that satisfy (1).

Since x = 0 is always a solution for any and thus not 
interesting, we only admit solutions with x ≠ 0.

The solutions to (1) are given the following names: The λ’s 
that satisfy (1) are called eigenvalues of A and the 
corresponding nonzero x’s that also satisfy (1) are called 
eigenvectors of A.

8.0 Linear Algebra: Matrix Eigenvalue Problems
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Section 8.1  p3

8.1 The Matrix Eigenvalue 

Problem. Determining

Eigenvalues and Eigenvectors
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Section 8.1  p4

We formalize our observation. Let A = [ajk] be a given 
nonzero square matrix of dimension n × n. Consider the 
following vector equation:
(1) Ax = λx.
The problem of finding nonzero x’s and λ’s that satisfy 
equation (1) is called an eigenvalue problem.

8.1 The Matrix Eigenvalue Problem. Determining

Eigenvalues and Eigenvectors
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Section 8.1  p5

A value of λ for which (1) has a solution x ≠ 0 is 
called an eigenvalue or characteristic value of the matrix A. 

The corresponding solutions x ≠ 0 of (1) are called the 
eigenvectors or characteristic vectors of A corresponding to 
that eigenvalue λ. 

The set of all the eigenvalues of A is called the 
spectrum of A. We shall see that the spectrum consists of at 
least one eigenvalue and at most of n numerically different 
eigenvalues. 

The largest of the absolute values of the eigenvalues 
of A is called the spectral radius of A, a name to be motivated 
later.

8.1 The Matrix Eigenvalue Problem. Determining

Eigenvalues and Eigenvectors



Advanced Engineering Mathematics, 10/e by Edwin Kreyszig

Copyright 2011 by John Wiley & Sons.  All rights reserved.

Section 8.1  p6

We illustrate all the steps in terms of the matrix

How to Find Eigenvalues and Eigenvectors

8.1 The Matrix Eigenvalue Problem. Determining

Eigenvalues and Eigenvectors

EXAMPLE 1  

Determination of Eigenvalues and Eigenvectors

5 2
.

2 2

 
  

 
A
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Section 8.1  p7

Solution. 
(a) Eigenvalues. These must be determined first. 
Equation (1) is

in components

8.1 The Matrix Eigenvalue Problem. Determining

Eigenvalues and Eigenvectors

EXAMPLE 1  (continued 1)

Determination of Eigenvalues and Eigenvectors

1 1

2 2

5 2
;

2 2

x x

x x


     
     

     
Ax

1 2 1

1 2 2

5 2

2 2 .

x x x

x x x





  

 
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Section 8.1  p8

Solution. (continued 1)

(a) Eigenvalues. (continued 1)

Transferring the terms on the right to the left, we get

(2*)

This can be written in matrix notation

(3*)

Because (1) is Ax − λx = Ax − λIx = (A − λI)x = 0, 
which gives (3*). 

8.1 The Matrix Eigenvalue Problem. Determining

Eigenvalues and Eigenvectors

EXAMPLE 1  (continued 2)

Determination of Eigenvalues and Eigenvectors

1 2

1 2

( 5 )            2 0

2 ( 2 ) 0

x x

x x





   

   

( ) 0 A I x
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Section 8.1  p9

Solution. (continued 2)

(a) Eigenvalues. (continued 2)

We see that this is a homogeneous linear system. It has a 
nontrivial solution (an eigenvector of A we are looking for) 
if and only if its coefficient determinant is zero, that is,

(4*)

8.1 The Matrix Eigenvalue Problem. Determining

Eigenvalues and Eigenvectors

EXAMPLE 1  (continued 3)

Determination of Eigenvalues and Eigenvectors

2

5 2
( ) det( )

2 2

( 5 )( 2 ) 4 7 6 0.

D


 


   

 
  

 

         

A I



Advanced Engineering Mathematics, 10/e by Edwin Kreyszig

Copyright 2011 by John Wiley & Sons.  All rights reserved.

Section 8.1  p10

Solution. (continued 3)

(a) Eigenvalues. (continued 3)

We call D(λ) the characteristic determinant or, if expanded, 
the characteristic polynomial, and D(λ) = 0 the 
characteristic equation of A. The solutions of this 
quadratic equation are λ1 = −1 and λ2 = −6. These are the 
eigenvalues of A.

(b1) Eigenvector of A corresponding to λ1. This vector is 
obtained from (2*) with λ = λ1 = −1, that is,

8.1 The Matrix Eigenvalue Problem. Determining

Eigenvalues and Eigenvectors

EXAMPLE 1  (continued 4)

Determination of Eigenvalues and Eigenvectors

1 2

1 2

4 2 0

2 0.

x x

x x

  

 
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Section 8.1  p11

Solution. (continued 4)

(b1) Eigenvector of A corresponding to λ1. (continued)

A solution is x2 = 2x1, as we see from either of the two 
equations, so that we need only one of them. This 
determines an eigenvector corresponding to λ1 = −1 up to a 
scalar multiple. If we choose x1 = 1, we obtain the 
eigenvector

8.1 The Matrix Eigenvalue Problem. Determining

Eigenvalues and Eigenvectors

EXAMPLE 1  (continued 5)

Determination of Eigenvalues and Eigenvectors

1 1 1 1 1

1 5 2 1 1
,   Check:   ( 1) .

2 2 2 2 2
x x

        
            

        
x Ax
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Section 8.1  p12

Solution. (continued 5)

(b2) Eigenvector of A corresponding to λ2. 
For λ = λ2 = −6, equation (2*) becomes

A solution is x2 = −x1/2 with arbitrary x1. If we choose x1 = 2, 
we get x2 = −1. Thus an eigenvector of A corresponding to 
λ2 = −6 is 

8.1 The Matrix Eigenvalue Problem. Determining

Eigenvalues and Eigenvectors

EXAMPLE 1  (continued 6)

Determination of Eigenvalues and Eigenvectors

2 2 2 2 2

2 5 2 2 12
,   Check:   ( 6) .

1 2 2 1 6
x x

        
            

         
x Ax

1 2

1 2

2 0

2 4 0.

x x

x x

 

 
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Section 8.1  p13

This example illustrates the general case as follows. 
Equation (1) written in components is

Transferring the terms on the right side to the left side, we 
have

(2)

8.1 The Matrix Eigenvalue Problem. Determining

Eigenvalues and Eigenvectors

11 1 1 1

21 1 2 2

1 1

 

.

n n

n n

n nn n n

a x a x x

a x a x x

a x a x x







  

  

  

11 1 12 2 1

21 1 22 2 2

1 1 2 2

( )                   0

         ( )          0

          

                 ( ) 0.

n n

n n

n n nn n

a x a x a x

a x a x a x

a x a x a x







    

    

    
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Section 8.1  p14

In matrix notation,

(3) 

By Cramer’s theorem in Sec. 7.7, this homogeneous linear 
system of equations has a nontrivial solution if and only if 
the corresponding determinant of the coefficients is zero:

(4)

8.1 The Matrix Eigenvalue Problem. Determining

Eigenvalues and Eigenvectors

( ) . A I x 0

11 12 1

21 22 2

1 2

( ) det( ) 0.

n

n

n n nn

a a a

a a a
D

a a a




 






   

  



A I
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Section 8.1  p15

A − λI is called the characteristic matrix and D(λ) the 
characteristic determinant of A. Equation (4) is called the 
characteristic equation of A. By developing D(λ) we obtain 
a polynomial of nth degree in λ. This is called the 
characteristic polynomial of A.

8.1 The Matrix Eigenvalue Problem. Determining

Eigenvalues and Eigenvectors
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Eigenvalues

The eigenvalues of a square matrix A are the roots of the 
characteristic equation (4) of A.
Hence an n × n matrix has at least one eigenvalue and at most n 
numerically different eigenvalues.

Section 8.1  p16

Theorem 1

8.1 The Matrix Eigenvalue Problem. Determining

Eigenvalues and Eigenvectors
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The eigenvalues must be determined first. 

Once these are known, corresponding eigenvectors are 
obtained from the system (2), for instance, by the Gauss 
elimination, where λ is the eigenvalue for which an 
eigenvector is wanted.

Section 8.1  p17

8.1 The Matrix Eigenvalue Problem. Determining

Eigenvalues and Eigenvectors
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Eigenvectors, Eigenspace

If w and x are eigenvectors of a matrix A corresponding to the 
same eigenvalue λ, so are w + x (provided x ≠ −w) and kx for 
any k ≠ 0.

Hence the eigenvectors corresponding to one and the same 
eigenvalue λ of A, together with 0, form a vector space, called the 
eigenspace of A corresponding to that λ.

Section 8.1  p18

Theorem 2

8.1 The Matrix Eigenvalue Problem. Determining

Eigenvalues and Eigenvectors
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In particular, an eigenvector x is determined only up to a 
constant factor. 
Hence we can normalize x, that is, multiply it by a scalar to 
get a unit vector.

Section 8.1  p19

8.1 The Matrix Eigenvalue Problem. Determining

Eigenvalues and Eigenvectors
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Section 8.1  p20

Find the eigenvalues and eigenvectors of

8.1 The Matrix Eigenvalue Problem. Determining

Eigenvalues and Eigenvectors

EXAMPLE 2  Multiple Eigenvalues

2 2 3

2 1 6 .

1 2 0

  
 

 
 
   

A
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Section 8.1  p21

Solution. 
For our matrix, the characteristic determinant gives the 
characteristic equation

−λ3 − λ2 + 21λ + 45 = 0. 
The roots (eigenvalues of A) are λ1 = 5, λ2 = λ3 = −3. 

8.1 The Matrix Eigenvalue Problem. Determining

Eigenvalues and Eigenvectors

EXAMPLE 2  Multiple Eigenvalues (continued 1)
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Section 8.1  p22

Solution. (continued 1)

To find eigenvectors, we apply the Gauss elimination to the 
system (A − λI)x = 0, first with λ = 5 and then with λ = −3 . 
For λ = 5 the characteristic matrix is

It row-reduces to

8.1 The Matrix Eigenvalue Problem. Determining

Eigenvalues and Eigenvectors

EXAMPLE 2  Multiple Eigenvalues (continued 2)

7 2 3

5 2 4 6 .

1 2 5



  
 

     
 
    

A I A I

7 2 3

0 24 / 7 48 / 7 .

0 0 0

  
 

 
 
  
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Section 8.1  p23

Solution. (continued 2)

Hence it has rank 2. Choosing x3 = −1 we have x2 = 2 from

and then x1 = 1 from −7x1 + 2x2 − 3x3 = 0.

Hence an eigenvector of A corresponding to λ = 5 is 
x1 = [1   2   −1]T.

For λ = −3 the characteristic matrix

row-reduces to

8.1 The Matrix Eigenvalue Problem. Determining

Eigenvalues and Eigenvectors

EXAMPLE 2  Multiple Eigenvalues (continued 3)

1 2 3

3 2 4 6

1 2 3



 
 

    
 
   

A I A I
1 2 3

0 0 0 .

0 0 0

 
 
 
  

2 3

24 48
0

7 7
x x  



Advanced Engineering Mathematics, 10/e by Edwin Kreyszig

Copyright 2011 by John Wiley & Sons.  All rights reserved.

Section 8.1  p24

Solution. (continued 3)

Hence it has rank 1 and there are 2 free variables. 
From x1 + 2x2 − 3x3 = 0 we have x1 = −2x2 + 3x3. 
Choosing (1) x2 = 1, x3 = 0 and (2) x2 = 0, x3 = 1, we obtain two 
linearly independent eigenvectors of A corresponding to λ
= −3

8.1 The Matrix Eigenvalue Problem. Determining

Eigenvalues and Eigenvectors

EXAMPLE 2  Multiple Eigenvalues (continued 4)

2 3

2 3

1           and           0 .

0 1

   
   

 
   
      

x x



Advanced Engineering Mathematics, 10/e by Edwin Kreyszig

Copyright 2011 by John Wiley & Sons.  All rights reserved.

Section 8.1  p25

• The order Mλ of an eigenvalue λ as a root of the characteristic 
polynomial is called the algebraic multiplicity of λ.

• The number mλ of linearly independent eigenvectors 
corresponding to λ is called the geometric multiplicity of λ. 
Thus mλ is the dimension of the eigenspace corresponding to this λ.

• Since the characteristic polynomial has degree n, the sum of 
all the algebraic multiplicities must equal n. 

• In Example 2 for λ = −3 we have mλ = Mλ = 2.  Generally 
speaking, mλ ≤ Mλ, as can be shown. The difference Δλ = Mλ − 
mλ is called the defect of λ. Thus Δ−3 = 0 in Example 2, but 
positive defects Δλ can easily occur.

8.1 The Matrix Eigenvalue Problem. Determining

Eigenvalues and Eigenvectors
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Eigenvalues of the Transpose

The transpose AT of a square matrix A has the same eigenvalues 
as A.

Section 8.1  p26

Theorem 3

8.1 The Matrix Eigenvalue Problem. Determining

Eigenvalues and Eigenvectors
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Section 8.3  p27

8.3 Symmetric, Skew-Symmetric,

and Orthogonal Matrices
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Symmetric, Skew-Symmetric, and Orthogonal Matrices

A real square matrix A = [ajk] is called
symmetric if transposition leaves it unchanged,

(1) AT = A, thus akj = ajk, 

skew-symmetric if transposition gives the negative of A,

(2) AT = −A, thus akj = −ajk, 

orthogonal if transposition gives the inverse of A,

(3) AT = A−1.

Section 8.3  p28

Definitions

8.3 Symmetric, Skew-Symmetric,

and Orthogonal Matrices



Advanced Engineering Mathematics, 10/e by Edwin Kreyszig

Copyright 2011 by John Wiley & Sons.  All rights reserved.

Any real square matrix A may be written as the sum of a 
symmetric matrix R and a skew-symmetric matrix S, where

(4)

Section 8.3  p29

8.3 Symmetric, Skew-Symmetric,

and Orthogonal Matrices

1 1
( )          and           ( ).

2 2
   R A A S A AT T
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Eigenvalues of Symmetric 

and Skew-Symmetric Matrices

(a) The eigenvalues of a symmetric matrix are real.

(b) The eigenvalues of a skew-symmetric matrix are pure 
imaginary or zero.

Section 8.3  p30

Theorem 1

8.3 Symmetric, Skew-Symmetric,

and Orthogonal Matrices



Advanced Engineering Mathematics, 10/e by Edwin Kreyszig

Copyright 2011 by John Wiley & Sons.  All rights reserved.

Section 8.3  p31

Orthogonal transformations are transformations
(5) y = Ax where A is an orthogonal matrix.

With each vector x in Rn such a transformation assigns a 
vector y in Rn. 

For instance, the plane rotation through an angle θ

(6)

is an orthogonal transformation. 

Orthogonal Transformations 

and Orthogonal Matrices

8.3 Symmetric, Skew-Symmetric,

and Orthogonal Matrices

1 1

2 2

cos sin

sin cos

y x

y x

 

 

    
     

    
y
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Invariance of Inner Product

An orthogonal transformation preserves the value of the inner 
product of vectors a and b in Rn, defined by

(7)

That is, for any a and b in Rn, orthogonal n × n matrix A, and 

u = Aa, v = Ab we have u ·v = a ·b.
Hence the transformation also preserves the length or norm of 
any vector a in Rn given by
(8)

Section 8.3  p32

Theorem 2

8.3 Symmetric, Skew-Symmetric,

and Orthogonal Matrices

1

1
.

n

n

b

a a

b

 
 

      
  

a b a bT

  . a a a a aT
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Orthonormality of Column and Row Vectors

A real square matrix is orthogonal if and only if its column vectors 
a1, … , an (and also its row vectors) form an orthonormal system, 
that is,

(10)

Section 8.3  p33

Theorem 3

8.3 Symmetric, Skew-Symmetric,

and Orthogonal Matrices

0   if   
 

1   if  .j k j k

j k

j k


  


a a a aT
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Determinant of an Orthogonal Matrix

The determinant of an orthogonal matrix has the value +1 or −1.

Section 8.3  p34

Theorem 4

8.3 Symmetric, Skew-Symmetric,

and Orthogonal Matrices
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Eigenvalues of an Orthogonal Matrix

The eigenvalues of an orthogonal matrix A 
are real or complex conjugates in pairs and 
have absolute value 1.

Section 8.3  p35

Theorem 5

8.3 Symmetric, Skew-Symmetric,

and Orthogonal Matrices
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Section 8.4  p36

8.4 Eigenbases. Diagonalization.

Quadratic Forms
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Section 8.4  p37

Eigenvectors of an n × n matrix A may (or may not!) 
form a basis for Rn. 

If we are interested in a transformation y =Ax, such 
an “eigenbasis” (basis of eigenvectors)—if it exists—is of 
great advantage because then we can represent any x in Rn 

uniquely as a linear combination of the eigenvectors x1, … , 
xn, say, 

x = c1x1 + c2x2 + … + cnxn.

8.4 Eigenbases. Diagonalization.

Quadratic Forms
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Section 8.4  p38

And, denoting the corresponding (not necessarily distinct) 
eigenvalues of the matrix A by λ1, … , λn, we have 
Axj = λjxj, so that we simply obtain

(1)

This shows that we have decomposed
the complicated action of A on an arbitrary vector x 

into
a sum of simple actions along the eigenvectors of A.

This is the point of an eigenbasis.

8.4 Eigenbases. Diagonalization.

Quadratic Forms

1 1

1 1

1 1 1

( )

.

n n

n n

n n n

c c

c c

c c 

   

  

  

y Ax A x x

Ax Ax

x x
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Basis of Eigenvectors

If an n × n matrix A has n distinct eigenvalues, then A has a basis 
of eigenvectors x1, … , xn for Rn.

Section 8.4  p39

Theorem 1

8.4 Eigenbases. Diagonalization.

Quadratic Forms
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Symmetric Matrices

A symmetric matrix has an orthonormal basis of eigenvectors 
for Rn.

Section 8.4  p40

Theorem 2

8.4 Eigenbases. Diagonalization.

Quadratic Forms
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Similar Matrices. Similarity Transformation

An n × n matrix Â is called similar to an n × n matrix A if

(4) Â = P−1AP

for some (nonsingular!) n × n matrix P. 

This transformation, which gives Â from A, is called a
similarity transformation.

Section 8.4  p41

DEFINITION

Similarity of Matrices. Diagonalization

8.4 Eigenbases. Diagonalization.

Quadratic Forms
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Eigenvalues and Eigenvectors of Similar Matrices

If Â is similar to A, then Â has the same eigenvalues as A.

Furthermore, if x is an eigenvector of A, then y = P−1x is an 
eigenvector of Â  corresponding to the same eigenvalue.

Section 8.4  p42

Theorem 3

8.4 Eigenbases. Diagonalization.

Quadratic Forms
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Diagonalization of a Matrix

If an n × n matrix A has a basis of eigenvectors, then

(5) D = X−1AX

is diagonal, with the eigenvalues of A as the entries on the main 
diagonal. 

Here X is the matrix with these eigenvectors as column vectors. 
Also,

(5*) Dm = X−1AmX (m = 2, 3, … ).

Section 8.4  p43

Theorem 4

8.4 Eigenbases. Diagonalization.

Quadratic Forms
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Section 8.4  p44

Diagonalize

Solution. 
• The characteristic determinant gives the characteristic 

equation −λ3 −λ2 + 12λ = 0. The roots (eigenvalues of A) 
are λ1 = 3, λ2 = −4, λ3 = 0. 

• By the Gauss elimination applied to (A − λI)x = 0 with λ
= λ1, λ2, λ3 we find eigenvectors to form X and then find  
X−1 by the Gauss–Jordan elimination. 

EXAMPLE 4  Diagonalization

8.4 Eigenbases. Diagonalization.

Quadratic Forms

    7.3 0.2 3.7

11.5 1.0   5.5 .

  17.7 1.8 9.3

 
 

 
 
  

A
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Section 8.4  p45

Solution. (continued 1)

The results are

EXAMPLE 4   (continued 1) Diagonalization

8.4 Eigenbases. Diagonalization.

Quadratic Forms

1   1 2

  3 1 1 ,

1   3 4

 
 

 
 
  

X

     
     

 
     
          

1 2 3

1   1 2

  3 , = 1 , = 1 ,

1   3 4

x x x

1

0.7   0.2   0.3

1.3 0.2   0.7 .

  0.8   0.2 0.2



 
 

  
 
  

X
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Solution. (continued 2)

Calculating AX and multiplying by X−1 from the left, we 
thus obtain

EXAMPLE 4   (continued 2) Diagonalization

8.4 Eigenbases. Diagonalization.

Quadratic Forms

  

 





  

   

   

  
 
 
  


   

   
  

 




      

1 2 3

1 1 2 2 3 3

1 1

1

0.7   0.2   0.3 0 0

1.3 0.2   0.7 0 0 .

  0.

3 4 0

9

8  

4 0

3 12 0.2 0

3

.2 00

4

00

D AX A x x x

x

X

X x x

X
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By definition, a quadratic form Q in the components x1, … , xn

of a vector x is a sum n2 of terms, namely,

(7)

A = [ajk] is called the coefficient matrix of the form. 
We may assume that A is symmetric, because we can take off-
diagonal terms together in pairs and write the result as a sum 
of two equal terms.

Section 8.4  p47

Quadratic Forms. 

Transformation to Principal Axes

8.4 Eigenbases. Diagonalization.

Quadratic Forms

1 1

2

11 1 12 1 2 1 1

2

21 2 1 22 2 2 2

2

1 1 2 2

   

   

.

n n

jk j k
j k

n n

n n

n n n n nn n

Q a x x

a x a x x a x x

a x x a x a x x

a x x a x x a x

 

 

   

   



   

x AxT
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Let

Here 4 + 6 = 10 = 5 + 5. 

EXAMPLE 5  Quadratic Form. 

Symmetric Coefficient Matrix

8.4 Eigenbases. Diagonalization.

Quadratic Forms

1
1 2

2

2 2

1 1 2 2 1 2

2 2

1 1 2 2

3 4

6 2

3 4 6 2

3 10 2 .

x
x x

x

x x x x x x

x x x x

  
      

   

   

  

x AxT
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From the corresponding symmetric matrix C = [cjk] where 
cjk = (ajk + akj), thus c11 = 3, c12 = c21 = 5, c22 = 2, we get the 
same result; indeed,

EXAMPLE 5  (continued) Quadratic Form. 

Symmetric Coefficient Matrix

8.4 Eigenbases. Diagonalization.

Quadratic Forms

1
1 2

2

2 2

1 1 2 2 1 2

2 2

1 1 2 2

3 5

5 2

3 5 5 2

3 10 2 .

x
x x

x

x x x x x x

x x x x

  
      

   

   

  

x CxT
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By Theorem 2, the symmetric coefficient matrix A of (7) 
has an orthonormal basis of eigenvectors. 

Hence if we take these as column vectors, we obtain a 
matrix X that is orthogonal, so that X−1 = XT. 

From (5) we thus have A = XDX−1 = XDXT. Substitution 
into (7) gives
(8) Q = xTXDXTx.

If we set XTx = y, then, since X−1 = XT, we have X−1x = y 
and thus obtain

(9) x = Xy.

Furthermore, in (8) we have xTX = (XTx)T = yT and XTx = y, 
so that Q becomes simply

(10) Q = yTDy = λ1y1
2 + λ2y2

2 + … + λnyn
2.

8.4 Eigenbases. Diagonalization.

Quadratic Forms
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Principal Axes Theorem

The substitution (9) transforms a quadratic form

to the principal axes form or canonical form (10), where 
λ1, … , λn are the (not necessarily distinct) eigenvalues of the 
(symmetric!) matrix A, and X is an orthogonal matrix with 
corresponding eigenvectors x1, … , xn, respectively, as column 
vectors.

Section 8.4  p51

Theorem 5

8.4 Eigenbases. Diagonalization.

Quadratic Forms

1 1

          ( )
n n

jk j k kj jk
j k

Q a x x a a
 

  x AxT
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Find out what type of conic section the following 
quadratic form represents and transform it to principal 
axes:

Solution. We have Q = xTAx, where

EXAMPLE 6  Transformation to Principal Axes. 

Conic Sections

8.4 Eigenbases. Diagonalization.

Quadratic Forms

  2 2

1 1 2 2
17 30 1 17 .28Q x x x x

1

2

17 15
,           .

15 17

x

x

   
    

   
A x
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Solution. (continued 1)

This gives the characteristic equation (17 − λ)2 − 152 = 0. It 
has the roots λ1 = 2, λ2 = 32. Hence (10) becomes

We see that Q = 128 represents the ellipse 2y1
2 + 32y2

2 = 128, 
that is,

EXAMPLE 6  (continued) Transformation to Principal Axes. 

Conic Sections

8.4 Eigenbases. Diagonalization.

Quadratic Forms

2 2

1 2
2 32 .Q y y 

2 2

1 2
2 2

1.
8 2

y y
 
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Solution. (continued 2)

If we want to know the direction of the principal axes in the 
x1x2-coordinates, we have to determine normalized 
eigenvectors from (A − λI)x = 0 with λ = λ1 = 2 and 
λ =  λ2 = 32 and then use (9). We get

EXAMPLE 6  (continued) Transformation to Principal Axes. 

Conic Sections

8.4 Eigenbases. Diagonalization.

Quadratic Forms

1/ 2 1 / 2
          and          

1 / 2   1 / 2

   
   
      
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Solution. (continued 3)

hence

This is a 45° rotation. 

EXAMPLE 6  (continued) Transformation to Principal Axes. 

Conic Sections

8.4 Eigenbases. Diagonalization.

Quadratic Forms

1

2

1 / 2 1 / 2
,

1 / 2 1 / 2

y

y

   
     

   

x Xy
1 1 2

2 1 2

/ 2 / 2

/ 2 / 2.

x y y

x y y

 

 
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8.5 Complex Matrices and Forms. 

Optional
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Notations

Ā = [ājk] is obtained from A = [ajk] by replacing each entry
ajk = α +  iβ (α, β real) with its complex conjugate ājk = α − iβ. 
Also, ĀT = [ākj] is the transpose of Ā, hence the conjugate 
transpose of A.

8.5 Complex Matrices and Forms. Optional

Section 8.5  p57
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Hermitian, Skew-Hermitian, and Unitary Matrices

A square matrix A = [akj] is called

Hermitian if ĀT = A, that is,      ākj = ajk

skew-Hermitian if ĀT = −A, that is, ākj = −ajk

unitary if ĀT = A−1.

Section 8.5  p58

DEFINITION

8.5 Complex Matrices and Forms. Optional
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It is quite remarkable that the matrices under 
consideration have spectra (sets of eigenvalues; see Sec. 
8.1) that can be characterized in a general way as follows 
(see Fig. 163).

Fig. 163. Location of the eigenvalues of Hermitian, skew-Hermitian,
and unitary matrices in the complex λ-plane

Eigenvalues

8.5 Complex Matrices and Forms. Optional
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Eigenvalues

(a) The eigenvalues of a Hermitian matrix (and thus of a 
symmetric matrix) are real.

(b) The eigenvalues of a skew-Hermitian matrix (and thus of a 
skew-symmetric matrix) are pure imaginary or zero.

(c) The eigenvalues of a unitary matrix (and thus of an 
orthogonal matrix) have absolute value 1.

Section 8.5  p 60

Theorem 1

8.5 Complex Matrices and Forms. Optional
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Invariance of Inner Product

A unitary transformation, that is, y = Ax with a unitary matrix 
A, preserves the value of the inner product (4), hence also the 
norm (5).

Section 8.5  p 61

Theorem 2

8.5 Complex Matrices and Forms. Optional
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Unitary System

A unitary system is a set of complex vectors satisfying the 
relationships

(6)

Section 8.5  p62

DEFINITION

8.5 Complex Matrices and Forms. Optional

0     if     
 

1     if     .j k j k

j k

j k


  


a a a aT
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Determinant of a Unitary Matrix

Let A be a unitary matrix. Then its determinant has absolute 
value one, that is, |det A| = 1.

Section 8.5  p 63

Theorem 4

8.5 Complex Matrices and Forms. Optional
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Basis of Eigenvectors

A Hermitian, skew-Hermitian, or unitary matrix has a basis of 
eigenvectors for Cn that is a unitary system.

Section 8.5  p 64

Theorem 5

8.5 Complex Matrices and Forms. Optional
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The concept of a quadratic form (Sec. 8.4) can be extended
to complex. We call the numerator             in (1) a form in 
the components x1, … , xn of x, which may now be 
complex. This form is again a sum of n2 terms

(7)

Hermitian and Skew-Hermitian Forms

8.5 Complex Matrices and Forms. Optional

x AxT

1 1

11 1 1 1 1

21 2 1 2 2

1 1
.

n n

jk j k
j k

n n

n n

n n nn n n

a x x

a x x a x x

a x x a x x

a x x a x x

 



  

  



  

x AxT
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(continued)

A is called its coefficient matrix. The form is called a 
Hermitian or skew-Hermitian form if A is Hermitian or 
skew-Hermitian, respectively. The value of a Hermitian form 
is real, and that of a skew-Hermitian form is pure imaginary or 
zero.

Hermitian and Skew-Hermitian Forms

8.5 Complex Matrices and Forms. Optional
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SUMMARY OF CHAPTER 8

Linear Algebra: 

Matrix Eigenvalue Problems

Section 8.Summary  p67
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SUMMARY OF CHAPTER 8
Linear Algebra: Matrix Eigenvalue Problems

The practical importance of matrix eigenvalue problems can 
hardly be overrated. The problems are defined by the vector 
equation

(1) Ax = λx.

A is a given square matrix. All matrices in this chapter are 
square. λ is a scalar. To solve the problem (1) means to 
determine values of λ, called eigenvalues (or characteristic 
values) of A, such that (1) has a nontrivial solution x (that is, 
x ≠ 0), called an eigenvector of A corresponding to that λ. 
An n × n matrix has at least one and at most n numerically 
different eigenvalues. 
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SUMMARY OF CHAPTER 8
Linear Algebra: Matrix Eigenvalue Problems

These are the solutions of the characteristic equation 
(Sec. 8.1)

(2)

D(λ) is called the characteristic determinant of A. By 
expanding it we get the characteristic polynomial of A, 
which is of degree n in λ. Some typical applications are 
shown in 
Sec. 8.2.

11 12 1

21 22 2

1 2

( ) det( ) 0.

n

n

n n nn

a a a

a a a
D

a a a




 






   

  



A I

(continued 1)
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SUMMARY OF CHAPTER 8
Linear Algebra: Matrix Eigenvalue Problems

Section 8.3 is devoted to eigenvalue problems for 
symmetric (AT = A), skew-symmetric (AT = −A), and 
orthogonal matrices (AT = A−1). Section 8.4 concerns the 
diagonalization of matrices and the transformation of 
quadratic forms to principal axes and its relation to 
eigenvalues.

Section 8.5 extends Sec. 8.3 to the complex analogs of those 
real matrices, called Hermitian (AT = A), skew-Hermitian 
(AT = −A), and unitary matrices 
All the eigenvalues of a Hermitian matrix (and a symmetric 
one) are real. For a skew-Hermitian (and a skew-symmetric) 
matrix they are pure imaginary or zero. For a unitary (and an 
orthogonal) matrix they have absolute value 1.

(continued 2)

1.A AT


